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Abstract—in this paper, we present some design problems of CWer pulsed
high-speed master—slave D-type flip-flop (MS D-FF). Essential to Loser
the long-haul optical-fiber communication systems, this circuit
is critical since it operates at the highest clock frequency for a
given bit rate. We discuss specific aspects of electrical design
of such a circuit and underline some important points for the
layout of gigabit circuits. In particular, we tackle the problem of
ringing, which can appear in emitter—follower structures using
the fast transistors necessary for high-speed operation. We have
pointed out also some difficulties of circuit layout, particularly Clock DMUX
certain connections that can cause serious ill functioning. The MS
D-FF was fabricated in our self-aligned InP double heterojunc- Fig. 1. ETDM synoptic with DFF role emphasized: 1) as a delay, 2) as a
tion-bipolar-transistor technology. On-wafer characterizations at decision circuit, 3) as a reshaper, and 4) as a DMUX.

40 Gb/s show 75% horizontal and 68% vertical eye opening.

Photo-receiver

Index Terms—Bipolar integrated circuits, flip-flops, indium

compounds, SONET, very high-speed integrated circuits. [1]. For example, in [2], a 5.12-Tbit/s transmission consisting of

a combination of 128 wavelengths modulated at 40 Gb/s each
over 300 km has been reported.
I. INTRODUCTION Different very high-speed integrated circuits (VHSICs) are

pecessary to realize ETDM systems. Each of them presents

HE important increase of communication services, parti > . . ; ;
ularly Internet traffic, needs to be supported by the develPecific requirements and is a challenging design task at
0-80 Gbis.

opment of adequate networks. Optical fiber, with its huge tran‘é- i ) ) )
mission capacities, is the dominant technology for long-haul P-tyPe flip-flop (D-FF) is a key electronic component in
communications. transmission systems, particularly for the physical (PHY)

To achieve high-speed transmissions, several data tributaff€" (Fig. 1). It is used to synchronize and/or delay data
have to be combined. Time-division multiplexing (TDM)WIth respect to the clock, but also as a reshaper and, at the
assigns individual data channels to time slots in a higher spd&§€1ving end, as a decision circuit. This decision circuit is at
stream. As number of multiplexed channels increases, the B¢ core of demultiplexing circuits, which can be realized (at
period get shorter. Systems with 10 Gb/s (corresponding i €xpense of phase margin (PM) and SNR) with two D-FF
the synchronous division hierarchy (SDH) STM-64 Europeeﬁperat,'”g at half the bit rate, controlled by the cloclf and its
standard and SONET OC-192 North American standard) é}@posne: It can also 'be .used for more complex functions 'sgch
now in commercial use. Due to the hierarchical nature of the@8 eye-diagram monitoring [3]. High-speed D-FF and decision
standards, with multiplication by four of the transmission bircuits have been fabricated in different technologies, i.e.,
rate when passing to the next level, the next single channel38AS heterojunction bipolar transistor (HBT) [4], InP HBT
be implemented is 40 Gb/s. Progresses in high-speed midrd: [6]; INP high electron-mobility transistor (HEMT) [7].
electronics have already permitted to set up 40-Gb/s electricall "€ difficulty of this circuit, compared to other composing
time-division multiplexing (ETDM) experiments, while firstthe ETDM systems, consists of its h|gh_ clock rate. It actually
80-Gb/s circuits begin to be evaluated. operates at a clock rate equal to the bit rate (to be compared

A combination of ETDM and dense wavelength division mui%ith the MUX and DMUX circuits, which operate at a clock

tiplex (DWDM) results in multiterabit transmission capacitiefféauency equal to half the bit rate). o
In this paper, we present the design of a D-FF circuit with a
particular focus on electrical level optimization and layout as-
Manuscript received April 5, 2002; revised August 12, 2002. pects. This circuit was fabricated in InP double heterojunction
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240 [ ' plicity and general availability. Additionally, the limited number
220 [ —n— Ft of parameters is an advantage in parameter-extraction proce-
—e— Fmax et dures. Unfortunately, the GP model is not able to predict with
e R high accuracy some of the following specific InP DHBT fea-

200

180 | %
160 |-

/-/"'\\K tures [9]:

\ » current dependence of due to electric-field profile mod-
¢ ulation;
\ * voltage dependence of due to intervalley scattering;
I « exponential dependence@jf. in high-current regime due
80 = — . o to elec.tron _accumul{iftion; . _ .

o (mA) . heterOjunct_lon-specmc “saturat|on".stat|c regime so that
access resistances are not overestimated.

As shown in [10], it is possible to adapt the GP model to
main DHBT PHY features by twisting the original meaning of

parameters. This approach was used for the presented design.
The circuit we present has been fabricated in an InP DHBT

technology, developed within the OPF¥OLaboratory, Mar-
coussis, France. The baseline technology has been presented i
detail in [8] and [9]. Transistors Sizing:As for all the VHSICs, the design of the
The InP-InGaAs self-aligned transistors have been faB-FF circuit is full custom. Individual transistor geometries
ricated on a chemical beam epitaxy (CBE)-grown epitaxifiave to be adjusted to reach optimal circuit performances.
structure. The use of a graded base eases the HBT scallhg base resistanck, and base—collector capacitanCgc
and permits emitter width reduction without current-gaiplay a leading role in the propagation delay time; thus, it is
degradation. A high breakdown voltagg@\(cgo > 6 V) is the necessary to lower the, x Cpc product. This can be done by
result of the double heterojunction structure. choosing the smallest emitter width allowed by the technology
In order to improve the frequency characteristics of thend providing the appropriate current density in the transistor.
devices, it is important to minimize both the base resistanceln our design, transistors with emitter dimensionsd®;m?
Rp and the base—collector junction capacitarGgc. The Wwere used. At 1 mAum? current density, these transistors have
general approach consists of decreasing the dimensions, but 140 GHz andF),,.x = 150 GHz.
then parasitic effects tend to dominate. For emitter lengthsEmitter—Follower (EF) Optimization:To achieve a correct
smaller than 1Q:m, a self-aligned base-pad isolation procesgperation at the highest possible speed, emitter-coupled logic
has been introduced. It reduces the parasitic base—colledfEL) or E?CL architectures are used. The EF structures allow
effects. Thus, high performances can be maintained even @taining better matching between common-mode logic (CML)
small transistor lengthZ, above 150 GHz is achieved forstages. However, these structures, especially realized with rapid
currents in the 2—6-mA range for 152 ym? devices. Such transistors, must be carefully designed to avoid excessive 0s-
a type of transistor can be suitably used for very low-powéfllations. These oscillations are caused by the combination of
high-frequency applications. a negative real part of EF impedance and input capacitance.
On-waferS-parameter measurements were performed up Bamping techniques with resistors can be used, but at a cost
65 GHz withVeg of 1.6 V. 170 GHzF; and 210 GHZ .. are  Of increasing the rise and fall times. The availability of precise
currently obtained on circuit-oriented devices at a current deffi@dnsistor models is crucial for optimization of this stage. In fact,
sity of 2.2 mA/um?. In Fig. 2, measured; andF,.., (Mason’s differentr andCsc model combinations can reproduce similar
gain) are presented in function fffor a 10x 1.5m? device. transistor speed, while predicting a completely different effect
Three Ti/Au interconnection levels, TaN resistors, metal—i®n oscillations.
sulator-metal (MIM) capacitors and spiral inductors are avail- Electrical Simulations: To make simulations more reliable
able for the designer; the three interconnection levels are usdfuthe context of nonperfect modeling, some additional com-

140

Frequency (GHz)

120 |

100

Fig. 2. Measured’, andF,,., (Mason’s gain) for a 1& 1.5um? device.

Il. TECHNOLOGY

rl?esign Optimization

to optimize the circuit layout. puter-aided design (CAD) modules were developed. The choice
of an operating region can be based on the synthetic informa-
IIl. CIRCUIT DESIGN tion presented in Fig. 3, where the frequency performanggs (

_ . . ) were overlaid on dc characteristics. The voltage breakdown line
Detailed time-domain simulations are necessary 10 assgsgso shown. After a transient simulation, it is possible to vi-

correct operation of VHSICs. As full-custom design is needegd, 5jize the duty cycle for each transistor. It can be presented
precise transistor models for various geometries are essenfidlother with additional characteristics like dc characteristics,
for electrical simulation. Passive elements should also Rg ki of iso-power lines. In Fig. 4, duty cycles for CML, ECL

modeled in the adequate frequency range. and E2CL pairs are presented. These curves compared with
. , iso-Ft lines in Fig. 3 indicate that ECL aritf C L pairs operate
A. Device Modeling in more favorable conditions as far as frequency performances

The nonlinear Gummel-Poon (GP) model is widely used fare concerned. The rise and fall times for the three previously
bipolar transistors. Attractive aspects of this model are its silmentioned pairs are presented in Fig. 5. It can be noted that ECL
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Fig. 8. DFF simulation with 40 Gb/s. Reabf) input and botton) output.

fall times are more important than sensitivity. At the receiving
end, sensitivity is a key parameter for its consequences in the
system design. For eye-diagram monitoring, both PM and sen-
sitivity are the more important parameters.
The MS D-FF circuit consists of an input buffer, which is de-
Fig. 5. Pulse simulation for CML, ECL, an€>C L. cisive for sensitivity, the circuit core that realizes the D-FF func-
tion, and an output buffer. In Fig. 6, the D-FF block diagram is
andE2C' L curves are similar, while there are differences in th%re;ented. DFF cores with ECL @HCL structures.have beg n
: o . esigned. Similar bit-rate operation has been obtained, while the
delay and fall times for CML pair simulation.

Final simulation of circuit operation is obtained with a psetor " consumption of the ECL. core architecture was 460 mw
P . . PS€Unstead of 540 mW with theZ2C'L structure. The electrical
dorandom source representing the input signal. Lengthy tran; . -
. . ; T .Scheme of the ECL D-FF core is presented in Fig. 7.

sient simulations are necessary to evaluate the time jitter. A sim- ; . A .

. DFF simulation results are presented in Fig. 8. The input
ulator from the SPICE family has been used. . . .

signal (40 Gb/s) is the one registered from the measurement

setup. A sinusoidal ideal clock signal has been applied. In Fig. 9,
the decision operation has been simulated. The 50-Gb/s input is
The precise specifications of the D-FF depend on its role the registered signal issued from voluntarily degraded MUX op-

the system. When used as a re-timer/re-shaper, jitter, rise, anation.

C. Architecture and Simulation Results
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Fig. 9. DFF decision operation at 50 Gbap) Input and botton) output.

IV. LAYOUT PROBLEMS

As the complexity and the circuit speed increase, the perfor-
mances are limited by the parasitic elements introduced during
the layout process, such as crossing capacitances, imperfect
ground references, long transmission lines, etc. [11], [12]. Qual- ' _ _ _ N
itative rules are applied to reduce the degradation due to th&&10. (a) D-FF simulation at 40 Gb/s with main parasitic effects. (b) D-FF

.. . . . %Jmulatlon at 32.5 Gb/s with parasitic connection to ground.
parasitic elements: crossing areas between the interconnection
levels are minimized and inductive voltage-supply metallize- - o -

tion avoided as far as possible. Due to circuit complexity, 5/5/ 7

is not possible to maximally shorten all connections. Fori/'/

given circuit architecture, critical connections are identifie%
and shortened as much as possible.

Furthermore, full-custom layout techniques (symmetrizatio
parasitic extraction) were developed and utilized throughout t’///

design. %
7
A. Layout Parasitic Extraction %7/

(b)

Clk-2 Vbe

T4
As presented in [13], home-developed layout extraction toc%’// 5 :
have been used in order to simulate the most critical layc 17 LR

T, Vdd

parasitic effects. Our CAD tools permit the extraction and o
post-simulation of each interconnection line (coplanar or m,'g—ig 1
crostrip), which is considered as critical. However, the com-"

plexity of this layout does not allow the simulation of the circuit . ,
with all parasitic elements simultaneously taken into account?@/ts t0 be back-annotated for simulation, as automated full par-

asitic extraction is currently not possible for VHSICs.
B. Influence of Parasitics in EF Connection The layout was corrected and the microphotograph of the

In this section, we show how degradation caused by groufa ricated chip is shown in Fig. 12. The chip dimensions are

metallization parasitics can become dominating and have disg'sdi>< 1.2 mn.

trous effects upon the circuit performance.

The first version of the D-FF circuit was simulated, taking
into account the crossing capacitances and interconnection coriFhe measurement setup is composed as follows. A 20-Gb/s
sidered as critical [see Fig. 10(a)]. As mentioned before, it jseudorandom bit pattern and its complementary are available.
not possible to systematically take into account all parasiti@ne data stream is delayed and is multiplexed with the other
elements. In our case, one of the connections (the EF pairuatng a 40-Gb/s MUX. The pseudorandom bit pattern generator
the clock input connection to ground, shown in Fig. 11) wa®RBG) and MUX are clocked by the same frequency synthe-
badly dimensioned. The metallization was too narrow. The paizer. This synthesizer is synchronized with a low phase-noise
asitic inductance of this interconnection caused voltage flutequency synthesizer, which provides the circuit’s clock signal.
tuations resulting in closing of the eye diagram beginning At50-GHz-sampling oscilloscope has been used.

30 Gb/s. This effect was confirmed by simulation as presented50<2 on-chip output and input resistances provide an effi-
in Fig. 10(b). cient impedance matching for testing and packaging. Less than

This example shows the importance of the layout phase and2 dB of signal reflection at the input and less tha® dB at
the necessity of human expertise to properly choose the crititia output were measured up to 65 GHz (cf. Fig. 13).

Badly dimensioned EF connection to ground.

V. EXPERIMENTAL RESULTS
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Fig. 12. Microphotograph of D-FF layout.
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Fig. 13. Signal reflection measurement at the input and output of the D-FF .

circuit.
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Fig. 14. Eye diagram at 40 Gb/sof) Input and botton) output.

10 ps/div

is 75%, while the vertical is 68%. The rise and fall times
(20%—80%) are approximately 8 ps. Roughly estimated PM is
12 ps. This value compared to time bit (25 ps) gives°178
PM evaluation taking into account the peak-to-peak input jitter
(margin(ps)/(timebit - jitter)(psx 360°) would give 263.

In Fig. 15, the measured regenerating capabilities of D-FF are
shown. A voluntarily degraded input is correctly restored by the
D-FF.

VI. CONCLUSION

We have presented problems related to the design of high-
speed D-FF circuits. In particular, we discussed the problem of
ringing, which can appear in EF structures using the rapid tran-
sistors necessary for high-speed operation. We pointed out also
some difficulties of circuit layout, and especially how certain
connections can cause serious dysfunction of the circuit. An MS
D-FF has been fabricated in InP HBT technology and character-
ized on-wafer. At 40 Gb/s, this circuit presents excellent regen-
erating properties, a good PM, and low time jitter.
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